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Abstract
We present a physics based Modelica finite volume flow
model that separately balances vapour and liquid phase.
By using extensive state variables and a special mass flow
regularisation, the model can cope with the possible van-
ishing or emerging of a phase in a numerically robust way.
Although at prototype stage, the model already exhibits
all required capabilities. These are demonstrated in fea-
ture testers and in a model of a natural convection driven
cooling cycle operating under external acceleration forces.
Keywords: two phase flow, six equation model, evapo-
rating and cooling cycle, natural convection, moving sys-
tems, ClaRa library

1 Introduction
For the modelling of two phase flows, the assumption of a
homogeneous spatial mixture of liquid and vapour phase
is widely used in Modelica. Both phases are taken in ther-
mal and mechanical equilibrium (equal temperature and
static pressure) and form a lumped mass flow. However
these assumptions are not always applicable, in particu-
lar in situations where vapour and liquid phase are ex-
pected to move independently. Within the NAKULEK1

project options for passive cooling of power electronics
in aircrafts have been investigated regarding their dimen-
sioning and reliability under aircraft flight conditions. In
these cooling circuits liquid coolant evaporates at the hot
electronic equipment. The vapour then releases its heat
in a condenser, see figure 7. The flow of the coolant is
solely driven by natural convection. However sufficient
heat removal has to be ensured at any time during opera-
tion of the aircraft. Hence the effect of external acceler-
ation forces due to flight manoeuvres on the coolant flow
has to be analysed, in particular rotations of the cooling
circuit. These may lead to induced liquid flows, shift-
ing vapour and liquid volume fractions at different spatial
positions in the circuit. Experimental studies have been
conducted by the project partners TUHH (Albertsen and
Schmitz 2019) and ZAL (Quaium and Kuhn 2020), that
additionally employ phase change material at the evapora-
tor in order to buffer heat flow peaks.

Based on the ClaRa library (ClaRa Development Team
2021) a Modelica library containing supplementary sys-

1NAKULEK - Natural Circulation driven Cooling of Power Elec-
tronics (German: Naturumlaufkühlung für Leistungselektronik).

tem models of the test facilities was created by the project
partner XRG Simulation GmbH (Brunnemann 2020).

This paper introduces a central element of that library:
a detailed two phase flow model, based on a finite volume
realisation of the so called 6-equation approach. It pro-
vides balance equations for mass, energy and momentum
separately for vapour and liquid phase (hence 6-equation
model) and considers dynamic external acceleration while
allowing counter-directional movement of the phases. Al-
though the model is at prototype stage it already exhibits
all desired capabilities, as demonstrated in section 3.

2 Model Development
The 6-equation model approach is well established in the
literature (Whalley 1987; Sokolichin 2003; Brennen 2005;
Ghiaasiaan 2008) and realised in several power plant sim-
ulators, e.g. APROS (Hänninen and Ylijoki 2008). In
Modelica, two phase flows are mostly treated as homo-
geneous flows with common balance equations for both
phases (3-equation model) (as e.g. in (Francke 2014) or
the Modelica Standard library). Sometimes these homo-
geneous models are extended by phenomenological mod-
els for interphase velocity difference (slip) or heat transfer
and/or friction, e.g. in (Hoppe, Gottelt, and Wischhusen
2017).

An alternative treatment is the moving boundary ap-
proach (Jensen and Tummescheit 2002; Bonilla et al.
2012), where the spatial regions of single-phase and two
phase are computed dynamically, but the two-phase region
is still modelled as a homogeneous model.

In (Bauer 1999) a an advanced evaporator model was
presented, with a common energy balance of the phases
but (optional) separate momentum balance. This model
already demonstrated the advantage of extended balanc-
ing, however numerical problems occurred at vanishing
vapour phase.

Separate balancing of vapour and liquid phase, dou-
bles the number of balance equations per control volume.
Beside the doubling the equations, such an extension in-
troduces a substantial number of additional flows in the
balance equations, due to interaction of the co-existing
phases. An overview is given in Table 1.

2.1 Limitations of Specific Quantity Approach
For realizing a 6-equation model based on finite control
volumes in Modelica one has to consider that the control
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Table 1. Flows considered in homogeneous 3-equation flow
model compared to 6-equation model. Simple doubling for both
phases is denoted by "(liq+vap)", interaction between phases
is denoted by "(liq↔vap)". Additional flows of the 6-equation
model are marked in blue.

Flow 3 equation 6 equation

Mass convective convective (liq+vap)
flows phase change (liq↔vap)

Enthalpy convective convective (liq+vap)
flows phase change (liq↔vap)

Heat to wall to wall (liq+vap)
flows interphase (liq↔vap)

Momen- static p static p (liq+vap)
tum flows water level (liq+vap)

dynamic p dynamic p (liq+vap)
phase change (liq↔vap)

wall friction wall friction (liq+vap)
interphase slip (liq↔vap)

gravity gravity (liq+vap)
external acceleration

volume V` and hence the volume fraction ε` =V`/Vtot of a
particular phase ` ∈ {liq,vap} varies with time. Only the
total volume Vtot = Vvap +Vliq is constant. Moreover for
single phase flow, the other phase is totally absent. For
an equation based Modelica model this implies that the
time evolution for states of that particular phase ` becomes
meaningless in the limit ε` → 0. This issue has been ad-
dressed e.g. in (Jensen and Tummescheit 2002; Bonilla et
al. 2012) where time evolution of states of the vanishing
phase are mapped onto those of the other phase as dummy
equation. For this mapping the form of the balance equa-
tions has to be modified: they need to be "switched over"
for volume fractions close to zero but also "switched back"
to the original zone physics if the volume of that zone ex-
ceeds a certain lower bound.

The ClaRa library (ClaRa Development Team 2021)
features pipe models using a homogeneous 3-equation fi-
nite volume approach, where a pipe flow is discretised
along flow direction into a one dimensional so called en-
ergy grid consisting of Ncv control volumes (energy cells).
In each energy cell specific enthalpy h and static pres-
sure p are chosen as states. Moreover flow velocity w is
balanced on a staggered flow grid consisting of Ncv + 1
flow cells, see Figure 1 with (for the 3-equation model
assumed) unified vapour/liquid control volumes. Time
evolution for pressure is derived from the mass balance
via Equation 11 and Equation 12 by using the fact that
V = const for the homogeneous 3-equation-approach.

While the 3-equation model assumes thermal and me-
chanical equilibrium (equal temperatures and static pres-
sure) as well as spatial homogeneity of the phases, the
6-equation model only assumes mechanical equilibrium

(equal static pressures). From that we created (as a
first attempt) a 6-equation model with state variables
hvap,hliq,wvap,wliq, p,εvap and tried to cope with vanish-
ing phases according to the "switching" of (Bonilla et al.
2012). However it turned out that the according modifi-
cation of the balance equations causes numerical stability
issues. In particular the "switching" procedure appears to
be problematic, as all balance equations are numerically
coupled. Additionally the "switch back" to physical time
evolution for an emerging phase turns out to be hard to de-
fine consistently. The definition of the state derivatives for
hvap/liq,wvap/liq becomes meaningless if massvap/liq→ 0.
Moreover the volume fraction εvap/liq is directly involved
into computation of friction pressure loss and heat trans-
fer through computation of contact surfaces. If εvap is a
state, then numerically it may happen that 0 ≤ ε ≤ 1 can
be violated by numerical precision. This in turn produces
numerical instabilities, e.g. diverging heat flows. A re-
thinking of these issues revealed the following insights:

1. It is easier to regulate flows in a conservation law
than to regulate the actual form of that law.

2. In the context of vanishing masses and dynamic con-
trol volumes we should refrain from using specific
quantities as states. Rather we should only balance
"countable" (extensive) quantities.

3. Static Pressure p and volume fraction εvap should not
be used as states.

2.2 From Specific to Absolute Quantities
Consequently we decided to base the 6-equation model
on absolute quantities, rather then specific quantities. See
Table 2 for a comparison. This means, that the specific

Table 2. Absolute and specific quantities. For completeness
particle number N and particle weight M are given in order to
illustrate the ’extensive’ nature of the absolute quantities. For
V = const , Equation 11 and Equation 12 can be used in order to
define a time evolution for pressure instead of mass.

Quantity absolute specific

particle number N

mass m M = m/N

internal energy U u =U/m

enthalpy H h = H/m

momentum I w = I/m

volume V v =V/m

quantities are not states. The time evolution of the system
does not depend on the behaviour of the specific quanti-
ties. They are just used as algebraic functions in order to
define the flows of enthalpy, momentum and volume as
well as inputs to the media model:

H f low = h ·m f low I f low =w ·m f low Vf low = v ·m f low (1)
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Notice that these definition are independent of time vary-
ing cross sectional area A�,` or volume V`: mass and ab-
solute quantity are independent of volume as well as the
mass flow rate m f low,`, which can be computed from mo-
mentum I` according to

m f low,` = w` ·ρ` ·A�,` =
I`
δx

. (2)

Here we have used A�,` = ε` ·A� and the fact that over-
all control volume Vtot = A� · δx (δx is the discretization
length of the flow grid) is constant in time.

2.3 Alternative State Selection
We will now work out the transition to new extensive state
variables in detail:

{p`,h`,w`}→ {m`,U`,H`, I`} (3)

Avoidance of specific quantities introduces one more state
on the right hand side. In order to avoid p, ε as states,
we use absolute Enthalpy H` in addition to internal energy
U`. The model will be set up on a staggered grid according
to (Figure 1). Circles inside the control volumes in Fig-
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Figure 1. Staggered grid used in model with inlet and outlet
connectors for each phase `∈ {1,2} ≡ {liq,vap}. Top line: flow
cells with momentum balance (I`). Bottom line: energy cells
with mass (m`) and energy (U`,H`) balance.

ure 1 represent state locations. Small " j" denotes flow cell
labels. Capital "J" denotes energy cell labels. The vol-
ume fraction εvap is variable in each control volume. Each
quantity "x" naturally defined on one of the grids can be
defined on the other grid by suitable interpolation. The
interpolated quantity "x" is marked by an overline.

We will denote the species index by `, where ` = 1⇔
liq, `= 2⇔ vap. Moreover we introduce the sign

σ` =

{
1 if `= 1
−1 if `= 2

With this convention we have for the total volume Vtot =
const =V1 +V2 and define the volume fractions

ε1 =
V1

Vtot
= 1− ε ε2 =

V2

Vtot
= ε , (4)

which implies

dV2

dt
=−dV1

dt
=Vtot

dε

dt
(5)

We assume mechanical equilibrium between the phases:

p = p1 = p2
d p
dt

=
d p1

dt
=

d p2

dt
(6)

2.3.1 Mass Balance

It is straight forward to show for the mass m`:

d
dt

m`[J] = m f low,`[ j]−m f low,`[ j+1]

+σ` m(cond)
f low [J]−σ` m(evap)

f low [J] (7)

Mass flows m f low,`[ j] are computed from momentum I`
according to Equation 44. The phase change mass flows
m(cond)

f low ,m(evap)
f low are computed according to section 2.6.3.

2.3.2 Energy Balance

For the internal energy U` we have:

d
dt

U`[J] = H f low,`[ j]−H f low,`[ j+1]

+Q(`→int)
f low [J]+Q(`→wall)

f low [J]

+σ` H(cond)
f low [J]−σ` H(evap)

f low [J]

−p[J]
dV`[J]

dt
(8)

Note that we have neglected kinetic and potential en-
ergy. For large flow velocities of considerable masses or
for flows along vertical pipes these terms can be added.
The convective enthalpy flows H f low,`[ j] are obtained
according to Equation 40. The conductive heat flows
Q(`→int)

f low [J],Q(`→wall)
f low [J] are described in section 2.6.1.

The enthalpy flows due to phase change are computed as

H(cond)
f low [J] = m(cond)

f low [J] ·h(bub)[i] (9)

H(evap)
f low [J] = m(evap)

f low [J] ·h(dew)[i] (10)

where h(bub),h(dew) denote bubble / dew specific enthalpy.
This assumes that the phase change enthalpy difference
∆h(evap) = h(dew)−h(bub), stays inside the outgoing phase:
condensation heat Q(cond)

f low = ∆h(evap)m(cond)
f low stays in-

side the vapour phase and conversely evaporation heat
Q(evap)

f low = ∆h(evap)m(evap)
f low is taken from the liquid phase.

In this way phase change is numerically stabilized, as liq-
uid phase is more cooled and vapour phase more heated
by phase change.

The last term on the right hand side of Equation 8 de-
notes possible expansion work, as the control volume of
each phase ` is variable (Skogestad 2009).
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2.3.3 Enthalpy Time Evolution

In the following we will leave out the `-index for sim-
plicity, but re-introduce it at the end. From the definition
of mass m = ρV it follows for the density ρ in a time-
dependent control volume V :

dρ

dt
=

1
V

{
dm
dt
−ρ

dV
dt

}
(11)

But from ρ = ρ(p,h) it also holds that

dρ

dt
=

∂ρ

∂ p

∣∣∣∣
h︸ ︷︷ ︸

d p
dt

+
∂ρ

∂h

∣∣∣∣
p︸ ︷︷ ︸

dh
dt

= A
d p
dt

+ B
dh
dt

(12)

This can be written as:

d p
dt

=
1
A

{
dρ

dt
−B

dh
dt

}
(13)

From U = H− pV it follows that

dH
dt

=
dU
dt

+
d p
dt

V + p
dV
dt

(14)

Moreover

dh
dt

=
d
(H

m

)
dt

=
1
m

{
dU
dt

+
d p
dt

V + p
dV
dt
− dm

dt
h
}

(15)

Here we have used Equation 14. Now we plug Equa-
tion 11 and Equation 15 into Equation 13. After some
algebraic manipulations we arrive at:

d p
dt

=
1
V

1
X

{
Y

dm
dt
−B

dU
dt
−Z

dV
dt

}
, (16)

where we have introduced the shorthands:

X = ρA+B Y = ρ+Bh Z = ρ
2+Bp

Now we can plug this into Equation 14 in order to replace
the d p/dt-term. After some manipulation this gives:

dH
dt

= ρ
A
X

dU
dt

+
Y
X

dm
dt
−ρ

W
X

dV
dt

. (17)

Here we have used W = ρ−pA.

Application to liq-vap-system Now we re-introduce
the species indices and set `= 1⇔ liq, `= 2⇔ vap. Using
Equation 16 we thus get:

d p1

dt
=

1
V1

1
X1

{
Y1

dm1

dt
−B1

dU1

dt
−Z1

dV1

dt

}
(18)

d p2

dt
=

1
V2

1
X2

{
Y2

dm2

dt
−B2

dU2

dt
−Z2

dV2

dt

}
(19)

Now we subtract Equation 19 from Equation 18. Using
Equation 6 and Equation 4, Equation 5 we can express:

Vtot
dε

dt
= −ε2X2Y1

Q12

dm1

dt
+

ε2X2B1

Q12

dU1

dt

+
ε1X1Y2

Q12

dm2

dt
− ε1X1B2

Q12

dU2

dt
(20)

where Q12 := ε1X1Z2 + ε2X2Z1. Writing out Equa-
tion 17 for both phases gives:

dH1

dt
= ρ1

A1

X1

dU1

dt
+

Y1

X1

dm1

dt
+ρ1

W1

X1
Vtot

dε

dt
dH2

dt
= ρ2

A2

X2

dU2

dt
+

Y2

X2

dm2

dt
−ρ2

W2

X2
Vtot

dε

dt

Now we plug in Equation 20 in order to replace the dε/dt-
term and can finally write for the time derivatives of the
total enthalpies :(

d
dt H1,

d
dt H2

)
=
(

d
dt m1,

d
dt U1,

d
dt m2,

d
dt U2

)
A (21)

with the matrix A given as

A=



Y1

X1
−ρ1

W1

X1

ε2X2Y1

Q12
ρ2

W2

X2

ε2X2Y1

Q12

ρ1
A1

X1
+ρ1

W1

X1

ε2X2B1

Q12
−ρ2

W2

X2

ε2X2B1

Q12

ρ1
W1

X1

ε1X1Y2

Q12

Y2

X2
−ρ2

W2

X2

ε1X1Y2

Q12

−ρ1
W1

X1

ε1X1B2

Q12
ρ2

A2

X2
+ρ2

W2

X2

ε1X1B2

Q12


2.3.4 Momentum Balance
As is the case for mass and energy balance, we use abso-
lute momentum I` as state variable, due to the time depen-
dence of the control volume V`. Also the cross sectional
flow area A�,` varies with time. Therefore we use mo-
mentum flows denoted by I f low, that is we balance forces
instead of force area densities (pressure drops).

d
dt

I`[ j] = I(stat)
f low,`[ j]+ I(grav)

f low,`[ j]− I(wall)
f low,`[ j]+σ` I(int)

f low,`[ j]

+I(adv)
f low,`[J−1]− I(adv)

f low,`[J]+ I(WL)
f low,`[J−1]− I(WL)

f low,`[J]

+σ` I(cond)
f low,` [ j]−σ` I(evap)

f low,` [ j] (22)

Static pressure force. We have

I(stat)
f low,`[ j]

A�
= ∆p[ j]ε`[ j]+Csupp

d
dt

(
∆p[ j]ε`[ j]

)
τpass[ j]

2
(23)

where ∆p[ j] = (p[J− 1]− p[J]) is the static pressure dif-
ference. A� denotes the overall cross sectional area of the
pipe. The second term on the right hand side can be ac-
tivated via Csupp ∈ {0,1} in order to suppress numerical
high frequency oscillations with τpass[ j] = δx[ j]/wsound[ j]
the passing time of a sound wave through the length δx[ j]
flow control volume V [ j].
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Force due to gravity and external acceleration. The
model considers acceleration ~ggrav due to gravity as well
as dynamic external accelerations ~gext due to movement
of the pipe. The resulting overall acceleration vector ~g
is given by ~g = ~ggrav +~gext . Now consider the unit vetor
~ex pointing into design flow direction of the pipe. It is
given by ~ex = (~rout −~rin)/|~rout −~rin|, where ~rout ,~rin are
the position vectors of the outlet, inlet frame connector
(see section 2.7). Now we can decompose~g into

~g =~g‖+~g⊥ (24)

where~g‖ =
〈
~g,~ex

〉
~ex,
〈
·, ·
〉

denotes the scalar product. Us-

ing g‖ = |~g‖| we can write for the overall force I(grav)
f low,`[ j]

induced by gravity and acceleration:

I(grav)
f low,`[ j] = g‖ m`[ j] (25)

The remainder ~g⊥ in Equation 24 is perpendicular to de-
sign flow direction and is given by~g⊥ =~g−~g‖.
Water level force. Using g⊥ = |~g⊥| of Equation 24, we
can write

I(WL)
f low,`[J] =

m`[J]
δx[J]

WL`[J] g⊥ (26)

WL is the water level height, computed from the spatial
separation model (see section 2.6.4). At clear spatial
separation of the phases, WL causes ’acceleration’ pres-
sure p(acc)

` = ρ` · g⊥ ·WL` (mostly) inside the liquid. This
causes an effective static pressure p(e f f )

stat,` = pstat + p(acc)
` .

Since static pressure acts isotropically, this in turn results
in I(WL)

f low,` along flow direction (compare to Equation 23).

Here we use ρ` =
m`
V`

= m`
δxA�ε`

. Multiplying p(acc)
` by the

phase cross sectional area A�ε` Equation 26 is obtained.

Wall Friction and Interphase Friction. are denoted by
I(wall)

f low,`[ j] and I(int)
f low,`[ j], see section 2.6.2.

Force due to advection (dynamic pressure). Based on
the usual formulation of the advective force,

I(adv)
f low,` = w`

I`
δx

= w2
` ·ρ` ·A�,` , (27)

and seeing how the mass flow and flow velocity are com-
puted from the momentum state (Equation 2), we may
write:

I(adv)
f low,`[J] =

{
w`[ j]m f low,`[ j] if w`[J]> 0

w`[ j+1]m f low,`[ j+1] else
(28)

In this formulation we avoid the time varying cross sec-
tional area and density.

Phase Change Forces Beside mass and enthalpy trans-
fer, phase change also causes momentum transfer between
the phases.

I(evap)
f low,` [ j] = m(evap)

f low [ j] w1[ j] (29)

I(cond)
f low,` [ j] = m(cond)

f low [ j] w2[ j] (30)

Here the interpolated phase change mass flows are com-
puted according to Equation 45.

2.4 Regularization of the Media Data in Case
of a Vanishing Phase

We consider two VLE-media, one for the vapor phase and
one for the liquid phase, that take pressure p and specific
enthalpy p as inputs. Moreover we use a VLE-object tak-
ing the overall homogeneous specific enthalpy

hhom =
H1 +H2

m1 +m2

Due to the mechanical equilibrium assumption p =
p1 = p2 it holds for bubble specific enthalpy that
h(bub)

1 = h(bub)
2 = h(bub)

hom = h(bub) and for dew specific en-
thalpy h(dew)

1 = h(dew)
2 = h(dew)

hom = h(dew). We use the actual
specify enthalpy

h` =
H`

max(mreg,m`)
(31)

as auxiliary quantity in order to define the regularized spe-
cific quantities

h(reg)
1 = min

(
h(bub),h1

)
h(reg)

2 = max
(

h(dew),h2

)
(32)

Here we have introduced a regulator mreg for vanishing
phase. The thus defined specific enthalpies h(reg)

1 ,h(reg)
2

are taken as input to the VLE-media objects together with
static pressure p. Note that Equation 32 allows for a short
time that specific enthalpy h` of a phase ` enters two phase
region. However due to evaporation and condensations
mass flows of Equation 54 the phase will return to pure
phase after a while. The suggested construction avoids
numerical issues due to heavily varying media data inside
two-phase-region.

2.4.1 Pressure and Volume Fraction
The introduction of the new state variables now allows to
define static pressure p and volume fraction ε` in terms
of the new states. For ` = {1,2} = {liq,vap} we intro-
duce the overall enthalpy Htot = H1 +H2 and the total in-
ner energy Utot = U1 +U2 as well as the volume fraction
ε1 = εliq = 1− ε , εvap = ε2 = ε . Now we use the defini-
tions H` =U`+ pV` and Htot =Utot+ pVtot and Equation 6
in order to write down

p =
Htot−Utot

Vtot
ε` =

H`−U`

Htot−Utot
(33)

In turn this also allows to express the time derivatives

d
dt

p =
1

Vtot

(
d
dt

Htot−
d
dt

Utot

)
(34)

Differentiating ε` with respect to time and simplifying the
obtained expressions one gets for the time derivative of the
volume fraction:

− d
dt

ε1 =
d
dt

ε2 =
1

Vtot
· ε1X1R2− ε2X2R1

Q(reg)
12

, (35)
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where R` = Y`
dm`
dt −B`

dU`
dt and

Q(reg)
12 =

{
εreg if |Q12|< εreg

Q12 else

2.5 Consistent Interpolation of Half Spaced
Quantities on Staggered Grid

Here we give a brief description, how quantities defined on
either energy or flow cell grid Figure 1 can be consistently
defined on the other grid by interpolation.

Volume

V `[ j] =
V`[J−1]+V`[J]

2
V tot[ j] =V 1[ j]+V 2[ j] (36)

Cross Sectional Area

A�,`[ j] = A�[ j] ε`[ j] A�[ j] =
V tot[ j]
δx[ j]

(37)

Length of Volume Element

δx[ j] =
δx[J−1]+δx[J]

2
(38)

Volume Fraction

ε`[ j] =
V `[ j]
V tot[ j]

=
Vtot[J−1]
2Vtot[ j]

ε`[J−1]+
Vtot[J]
2Vtot[ j]

ε`[J] (39)

Mass of Flow Cells While the previous quantities are
defined in a straight forward way, the mass m`[ j] of
a flow cell needs some additional considerations. In
a homogeneous 3-equation model one would choose
m`[ j] = (m`[J − 1] + m`[J])/2. However this is not
consistent with the possible vanishing of a particular
phase. To see this recall Equation 2, that expresses
the mass flow m f low,` in terms of the momentum I`:
To see this, consider two neighbour energy cells, with
ε2[J−1] = 0 and ε2[J]> 0. Clearly, there cannot be vapour
mass flow from [J − 1] → [J], as m2[J − 1] = 0. Only
vapour mass flow in opposite direction [J]→ [J− 1] may
occur. And the model shall account for this. If we ’count’
mass as a state, then the pure mass flows carry that quan-
tity, similarly to e.g. enthalpy flows

H f low,`[ j] = m f low,`[ j]h`[ j] , (40)

where the mass flow carries specific enthalpy h[ j]. In the
latter case one often uses an upstream scheme in order to
define specific enthalpy h[ j] at the center of a flow cell,
that is

h`[ j] =
{

h`[J−1] if m f low,`[ j]> 0
h`[J] if m f low,`[ j]< 0

(41)

Accordingly we may use an upstream scheme for the mass
m`[ j] of a flow cell:

m(up)
` [ j] = ς

(I)
` [ j] ·m`[J−1]+

(
1− ς

(I)
` [ j]

)
·m`[J]

with ς
(I)
` [ j] = sm(Ireg,0, I`[ j]), where sm(·) de-

notes the stepSmoother function contained in

Modelica.Fluid.Dissipation.Utilities. Ireg is
a regulator. Then we set

m`[ j] = max
(

mreg,m
(up)
` [ j]

)
, (42)

with mreg a regulator. At present, the approach still uses
absolute boundaries for the regulators. In principle, these
should be scaled according to a characteristical smallest
number (such as smallest length or volume) of the system.
This way, the approach will be robust for varying system
sizes.

Flow Velocities The flow velocities can be well defined:

w`[ j] = max
(
−ws[ j],min

(
ws[ j],

I`[ j]
m`[ j]

))
, (43)

where we limit the flow velocity to the speed of sound
ws in order to avoid unrealistic flow velocities in the limit
of small masses mreg, which may lead to unwanted fric-
tional momentum flows. By construction our model as-
sumes subsonic flow speeds. At energy cell flow locations
we use the averaged momentum

w`[J] = max
(
−ws[J],min

(
ws[J],

I`[ j]+ I`[ j+1]
m`[J]

))
Mass Flows are then written as

m f low,`[ j] = ς
(m)
` [ j] · I`[ j]

δx[ j]
, (44)

where ς
(m)
` [ j] = sm(mmax,mmin,m`[ j]) and mmax,mmin are

regularization parameters. This construction ensures that
outgoing mass flow of a particular phase goes to numeric
zero if the mass of that phase inside the control volume
approaches zero. In particular no mass of a phase ` can be
extracted from a control volume with ε` = 0. On the other
side mass can be easily injected from control volumes with
ε` > 0 into control volumes with ε` = 0. This becomes
especially important in situations, where e.g. vapour is
injected from the outside into a pipe entirely filled with
liquid.

Phase Change Mass Flows at momentum state location
are computed as the sum of the phase change mass flows
of the two adjacent energy half cells:

m(evap)
f low [ j] =

m(evap)
f low [J−1]+m(evap)

f low [J]

2
(45)

m(cond)
f low [ j] =

m(cond)
f low [J−1]+m(cond)

f low [J]

2
(46)

2.6 Replaceable Models
2.6.1 Heat Transfer
For each position J we have for the heat flows:

Q(`→int)
f low = ς

(m)
` ·αint ·A12 · (Tint −T`) (47)

Q(`→wall)
f low = ς

(m)
` ·α`,wall ·A`,wall · (heat.T −T`) (48)
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Here again ς
(m)
` [J] = sm(mmax,mmin,m`[J]) denotes the

stepsmoother function. The mean interphase surface tem-
perature Tint is computed from imposing a steady state en-
ergy balance at the phase contact surface:

0 = ∑
`

Q(`→int)
f low (49)

Similarly the heat flow for the heat port is computed as

heat[J].Q f low = ∑
`

Q(`→wall)
f low [J] (50)

2.6.2 Momentum Transfer
Wall + interfacial friction/ heat transfer models should
give truly zero momentum/heat flow at vanishing phase.
As default we use a 0-equation turbulence (mixing length)
approach (VERSTEEG and MALALASEKERA 1995),
which describes the effect of turbulence by an effective
modification of dynamic viscosity µ`:

µ`[ j] = µ
(0)
` [ j] · (1+CF` ·Re`[ j]); (51)

with Reynolds number Re`[ j] =
∣∣w`[ j]

∣∣ρ`[ j]δx[ j]/µ
(0)
` [ j]

and a calibration factor CF`. Then we can write for the
friction between the phases

I(int)
f low,`[ j] =

(w2[ j]−w1[ j])
max(lreg,∆l12[ j])

µ`[ j] A12[ j] (52)

Similarly we have for the friction force between phase `
and the pipe walls:

I(wall)
f low,`[ j] =

w`[ j]
max(lreg,∆l`,wall [ j])

µ`[ j] A`,wall [ j] (53)

Moreover A12 denotes the contact area between the phases
and ∆l12 the mean distance between the center of the phase
control volumes. Similarly A`,wall denotes the contact sur-
face area between phase ` and pipe wall and ∆l`,wall de-
notes the mean distance between phase control volume
and pipe wall. At present stage, we assume ideal phase
separation to derive these quantaties, as described in sub-
subsection 2.6.4. A flow regime model that computes A12
and and ∆l12 from an effective flow pattern (e.g., ideally
separated, homogeneous mixture) will be subject to future
work. Also, a more sophisticated turbulence model could
be implemented. From our experience Equation 51 en-
sures that wall and interphase friction play together in a
numerically stable way.

summary

CF

fluid[]fluid[]fluidInlet[]fluidInlet[] fluidOutlet[]fluidOutlet[]fluid_hom[]fluid_hom[]

par iCom

heat[]inletFrame outletFrame

eye[]

eye_int[]

inlet outlet

eye

Figure 2. Diagram layer with connectors and replaceable mod-
els for heat transfer, pressure drop, phase change, spatial distri-
bution and geometry.

2.6.3 Phase Change Models

The evaporation and condensation massflows are the
massflows from the liquid to the vapour phase control vol-
ume and vice versa. They are considered to be propor-
tional to the respective volume and, therefore, the avail-
able mass. Moreover, they scale with the steam quality
and come to a halt, if the outgoing phase vanishes:

m(evap)
f low [J] =

ς
(ε)
1 [J]
τevap

max
(
0,

h1[J]
h(bub)[J]

−1
)

max
(
0,m1[J]

)
m(cond)

f low [J] =
ς
(ε)
2 [J]
τcond

max
(
0,1− h2[J]

h(dew)[J]

)
max

(
0,m2[J]

)
(54)

Here ς
(ε)
` [J] = sm(εmax,εmin,ε`[J]) and εmax,εmin are reg-

ularization parameters. Moreover we have time constants
τevap,τcond . They can be thought of average time it takes
for bubbles to exit from liquid to vapour phase and mean
time it takes water drops coming from vapour phase in or-
der to enter liquid phase. Larger constants mean a slower
phase change mass flow, while smaller time constants
would imply very dynamic phase changes. The ansatz
could be improved by a flow regime depending boiling
model, considering the bubble formation, mean bubble di-
ameter and travel distance. The time constants should also
be affected by the contact area of the phases.

2.6.4 Spatial Separation

This model computes certain average contact areas and
distances as well as water level. So far a simple model is
implemented, assuming ideal phase separation and a cir-
cular pipe cross section.

A12[ j] = 4 ·max(0,ε1[ j] · ε2[ j] ·A(0)
12 [ j])

A`,wall [ j] = max(0,ε`[ j] ·Awall [ j])

∆l12[ j] = 4 ·max(d�/100,ε1[ j] · ε2[ j] ·d�/2)

∆l`,wall [ j]] = max(d�/100,ε`[ j] ·d�/2) (55)

here d� is the pipe diameter and A(0)
12 [ j] = δx[ j] · d� is

the maximum contact surface of the phases in a horizontal
cylindrical pipe at ideal separation. Water level WL1[J] is
computed from d� and liquid volume fraction ε1[J] for
a horizontal cylinder volume, assuming ideal separation.
Consequently WL2[J] = d�−WL1[J].

2.6.5 Geometry

The model features different geometries, smilarly to
ClaRa pipes, in particular it covers pipe bundles.

2.7 Connectors
Flow connectors are build from a two el-
ement array of ClaRa flow connectors
ClaRa.Basics.Interfaces.FluidPortIn and
ClaRa.Basics.Interfaces.FluidPortOut, one
for each phase. A vanishing phase is not problematic,
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since the static pressure is equal for both phases and
if we ensure to have a momentum state at one side of
the connector. Also in this case hout f low of that phase
is physically not relevant and can be set to a dummy
value. To connect the 6-equation model to a 3-equation
component, however, one would need a suitable adapter.
The adapter needs to ensure the compatibility with the
flow situation: In particular a homogeneous 3-equation
model cannot cope with counter flow of the phases.
One ClaRa.Basics.Interfaces.HeatPort_a
Heat port is attached to every control volume of the
energy grid. In order to account for external accel-
eration each model carries Frame connectors from
the Modelica.Mechanics.MultiBody package
Interfaces.Frame_a, Interfaces.Frame_b. They
also ensure consistency of three dimensional pipe
arrangements.

3 Applications
The newly developed 6-equation model was put into fea-
ture testing (single pipe) and system testing (several pipes
in system application). In this section we present three
prominent examples.

3.1 Feature Tests
3.1.1 Condensation in a Tilted Pipe
This is a classic example of counter-phase flow, which
is also a fair challenge for conventional CFD models:
Slightly overheated steam (at 3 bars) is injected from a

Figure 3. Condensation in the tilted pipe test model. Geometry:
length L=80 m, diameter d�=1 m, discretisation NCV =40, incli-
nation ∆z=20 m.

mass flow source into an inclined pipe from the inlet. The
bottom of the pipe is connected to a vapour and liquid
pressure boundary condition. The first and the last 20 m
of the pipe wall are heated to 295 °C. The middle section
of the pipe wall (40 m) is cooled to 5 °C, such that con-
densation occurs. The condensed liquid flows downward
in the direction of the slope. Pressure drop due to conden-
sation causes backflow of vapour in pipe section close to
the outlet. Hence, vapour is sucked into the pipe while liq-
uid rinses out at outlet. The selected results are presented
in Figure 4. The tester demonstrates applicability of the
model for heat exchangers where two phase flow occurs.
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Figure 4. Resulted steady state mass flow of vapour and liquid
together with volume fraction of vapour along the tilted pipe
during condensation scenario.

Not only the stationary hardware, but also moving devices
e.g. in vehicles, aircrafts or ships can be simulated.

3.1.2 Rotation Test
A horizontal tube is filled half with vapour and with liquid
(εliq = εvap = 0.5). The tube is then rotated 90°downwards
and back to the to the initial position. The tube is dis-

world
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y

0
rotation1

varRotation

angles=rotIn

a

b

0
rotation3

v
l

2
1

2
1

trapezoid

firstOrder
PT1

Figure 5. Rotation test model. Geometry: L=10 m, Din=0.02 m,
NCV =41.

cretized with an odd number of control volumes. The
model is shown in Figure 5. The results of the simulation
scenario is presented in Figure 6 where the actual rotation
angle is displayed below, and above it, the volume frac-
tion of the liquid phase at the beginning, in the middle and
at the end of the tube is shown. Before the rotation, the
volume fractions are all at 50%. After the rotation, there
is no more liquid at the top of the tube, while the tube end
is completely filled with liquid. As expected, the volume
fraction settles vertically at 50% liquid and 50% vapour.
When turning back to horizontal position again, a decay-
ing wave formation is visible (enlarged area), before the
liquid level settles again uniformly at 50%.

3.2 Aircraft Cooling Circuit
3.2.1 Test Rig Model
The project partners at TUHH and ZAL (Albertsen and
Schmitz 2019; Quaium and Kuhn 2020) provided detailed
information on their passive cooling cycle test rigs, as well
as extensive data on the conditions and results of the mea-
surement campaigns. The basic structure of the respective
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Figure 6. Resulted liquid volume fraction of the rotation test
scenario.

test rigs was largely identical, the main difference being
the use of a single or three parallel evaporators. In both
cases, phase change material was considered as a heat load
buffer at the evaporator. Figure 7 shows our test rig model
within the Dymola graphical environment. The rising/-
downcoming pipes and mass flow meter, as well as the
evaporator and condenser models, are all based on the 6-
equation flow models described above.
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Figure 7. Diagram of measurement test rig model.

3.2.2 Heat Up and Shut Down Scenario
The first test scenario involves a sudden increase in heat-
ing power at the evaporator, followed by a sudden shut-
down of the heater. Simulation results and measurement
data are compared in Figure 8. The model is brought to
steady state (corresponding the starting point of measured
data) in several steps. Simulation is started with liquid in
all the pipes and the cooling is on. After around 500 s, the
heating is switched on. PID controller removes portion
of flow until pressure reaches set point during operation.
At around 2000 s the PID controller is disabled and the

circuit is closed (self-regulating) and the system stabilizes
(reaches steady state at 710 W).
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Figure 8. Heat flow (left), Pressure drop between evaporator
inlet and condenser inlet (mid) and Mass flows of vapour and
liquid (right), during heat up and shut down scenario.

During steady state operation at 710 W, the total mass
flow through the system is around 11 g/s. Mass flow of
liquid mass flow of vapour in evaporator is 8 g/s and 3 g/s
respectively. During heat up to 1210 W, εvap increases.
As a consequence mass flow of liquid drops to 3 g/s and
mass flow of vapour increases to 5 g/s. After around 115
s (holding the new higher power level), a sudden power
off (0 W) is introduced. This causes a decrease of vapour
mass flow to 0 g/s and mass flow of liquid shortly increases
(peaking after 30 s from shut down) as evaporator walls
are still hot and pressure drop is high (caused by previous
high mass flow of vapour). After reaching the peak (14
g/s), the mass flow of liquid also goes to zero, as there
is no driving force (no heating). Figure 8 also shows the
pressure drop between evaporator inlet and condenser out-
let. There is higher pressure drop at higher heating power
resulting from higher mass flow of vapour. Simulation re-
sults are in very good agreement with measured values.
All steady state, heating ramp up and shut down processes
were captured very well. Although measurements only
provide information on the total mass flow, information on
vapour/liquid mass flow can be derived (using total mass
flow, pressure in the system and inlet/outlet temperature in
evaporator) and energy and mass balance equations. The
simulated results correspond very well to the derived val-
ues.

3.2.3 Rotation Scenario

The second scenario involves a rotation of the test rig run-
ning in steady state, reflecting a typical manoeuvre during
a flight. The system is heated up by 850 W and steady state
operation is achieved. At 2500 s a sudden (within 10 s)
clockwise rotation by 20°around Y axis is introduced. Af-
ter 300 s the system is turned back to normal position and
reaches its initial steady state. Our model already captures
the measured total mass flow drop during rotation qualita-
tively well. The quantitative deviation seems to be caused
by the sudden change of spatial liquid/vapour distribution
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and indicates that the currently simple models for friction
and spatial distribution need further elaboration.
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Figure 9. Rotation angle (left) and Mass flows of vapour and
liquid (right) during the rotation scenario.

4 Summary & Outlook
In this paper we present a numerically robust implementa-
tion of detailed two phase model based on the six-equation
approach. To achieve this we introduce an alternative set
of extensive state variables from which specific quanti-
ties static pressure and volume fractions of the vapour and
liquid phase can be computed algebraically. The appli-
cability of the model is demonstrated in several testers.
Currently the model is further developed to feature more
detailed models for friction, spatial distribution and heat
transfer, e.g. (Hoppe, Gottelt, and Wischhusen 2017). It is
also straightforward to extend the model to feature multi-
component media. The model has potential application
in several areas of engineering, from aerospace, automo-
tive and naval systems design to power plants and process
technologies. Typical industrial systems with two phase
heat exchangers such as evaporators, boilers, steam gener-
ators and condensers would be typical example of appli-
cation, especially when it comes to non-standard transient
operation scenarios, e.g. start up/shut down, heat up/cool
down, filling or draining of the system under investigation.
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