PHyMOs - Proper HYbrid MOdels for Smarter Vehicles

Das Fahrzeug der Zukunft ist „smart“. Mit zunehmender Selbstverständlichkeit wird erwartet, dass ein Fahrzeug auf Veränderungen in seiner Umgebung flexibel reagieren und selbstständig Entscheidungen fällen kann, um sich optimal an verändernde Randbedingungen anzupassen. Dies bedeutet ein hohes Maß an „self-awareness“, also die Fähigkeit die Auswirkung des eigenen Verhaltens in der Interaktion mit der Umgebung zu prädizieren. Derartige Modelle seiner selbst und der Umgebung schnell, kosteneffizient und in Abwägung von Fidelity und Performanz erstellen zu können ist eine Schlüsselkompetenz. Klassische modelbasierte Ansätze sind häufig mit hohen Entwicklungsaufwänden verbunden. Fortschritte im Bereich der künstlichen Intelligenz eröffnen neue Optionen sind aber daten-intensiv und bergen andere Risiken. In diesem Projekt sollen hybride (daten- und physikbasierte) Ansätze in konkreten Anwendungen evaluiert werden, um unter Nutzung von vorhandenem physikalischem Vorwissen in dateneffizienter Weise skalierbare „Proper Models“ generieren zu können. Dies wird es zukünftig ermöglichen innovative Produkteigenschaften in wesentlich kürzerer Zeit zu entwickeln und im Fahrzeug zu realisieren.

XRG lieferte in diesem Projekt ein physikalisches Fahrzeugkabinenmodell, aus dem ein echtzeitfähiges Modell abgeleitet werden konnte. Das beschleunigte Modell bietet vielfältige Anwendungsmöglichkeiten in HiL-Applikationen und ermöglicht den Transfer der relevanten Modellinformation auf Regelungshardware. Gleichzeitig eröffnet es die Möglichkeit konzeptionelle Optimierungen wesentlich zu beschleunigen. XRG hat mit seinen Projektpartnern Methoden entwickelt und danach als prototypische Erweiterung für die XRG Software SCORE implementiert. Die entwickelten Routinen bildeten die Grundlage für die finale Demonstration der Erstellung eines Proper Models unter Berücksichtigung der mehrerer unterschiedlicher Werkzeugketten.

 

PARTNER

Das Projekt wurde in enger Kooperation mit folgenden Partnern durchgeführt:

  • Robert Bosch GmbH, Stuttgart,
  • Universität Augsburg, Augsburg,
  • Technische Universität Braunschweig, Braunschweig,
  • Fachhochschule Bielefeld, Bielefeld,
  • TLK-Thermo GmbH, Braunschweig,
  • ESI ITI GmbH, Dresden,
  • LTX Simulation GmbH, München,
  • Modelon Deutschland GmbH, Hamburg.

 

Forschungsförderung

Das Forschungsprojekt PHyMoS, welches durch das Bundesministerium für Wirtschaft und Klimaschutz unter dem Förderkennzeichen [19I20022F] gefördert wurde, begann im März 2021 und endete im Aug. 2024.





Projekte
PHyMOs project teaser logo
1

PHyMOs (03.2021 - 08.2024)

Proper Hybrid MOdels for Smarter vehicles MEHR
Projekte
DIZPROVI Logo
0

DIZPROVI (04.2021 - 04.2024)

DIgitale Zwillinge für PROzessoptimierung und Vorausschauende Instandhaltung MEHR
Projekte
0

NAKULEK (07.2016 - 06.2020)

Nakulek - Modellbasierte Auslegung und Analyse einer Naturumlaufkühlung für Flugzeugsysteme MEHR
Projekte
0

DynStart (08.2015 - 06.2019)

DynStart – Anfahren und transientes Verhalten von Kraftwerken. Zur ClaRa Website / MEHR
Projekte
0

Coherent (01.2014 - 10.2016)

CoHeReNT - Control of Heat Recovery Networks MEHR
Projekte
0

Toica (09.2013 - 08.2016)

Thermal Overall Integrated Concept Aircraft Zur TOICA Website / MEHR
Projekte
0

MoMoLib (11.2011 - 10.2013)

Medienmodelle für feuchte Luft und R134a Modelica library MoMoLib 1.0 / MEHR
Projekte
0

DynCap 03.2011 - 08.2014

Dynamische Modellierung von konventionellen Kraftwerkprozessen Zur ClaRa Website / MEHR
Projekte
0

SyntHEX (11.2010 - 12.2012)

Optimale Wärmeübertragernetzwerke Product data sheet SyntHEX (.pdf) / MEHR
Projekte
0

OpenProd (06.2009 - 12.2012)

Open Model-Driven Whole-Product Development and Simulation Environment OpenProd Website / MEHR
Projekte
0

Mohicab (01.2008 - 03.2011)

Modelling Humidity in Aircraft Cabins MEHR
Projekte
0

EuroSysLib-D (10.2007 - 06.2010)

Modelica libraries for embedded systems modeling and simulation MEHR